Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Study of temperature and indium concentration-dependent dielectric constant and electron affinity effects on the exciton optical transition and binding energy in spherical GaSb-Ga1-xInxAsySb1-y-GaSb quantum dots

Identifieur interne : 003832 ( Main/Repository ); précédent : 003831; suivant : 003833

Study of temperature and indium concentration-dependent dielectric constant and electron affinity effects on the exciton optical transition and binding energy in spherical GaSb-Ga1-xInxAsySb1-y-GaSb quantum dots

Auteurs : RBID : Pascal:11-0036745

Descripteurs français

English descriptors

Abstract

We have study the heavy-hole exciton states in GaSb-GainAsSb-GaSb type-I spherical Quantum Dots, using temperature-dependent static dielectric constant and electron affinity, with a finite height potential barrier, as a function of the quantum dot radius for several values of Indium concentration. Our calculations have been worked out using interpolating methods to find the temperature and Indium concentration dependence of both the dielectric constant and electron affinity, in order to determine the conduction and valence band-offsets in GaSb-GalnAsSb-GaSb heterostructure by application of the Electron Affinity Rule. We have calculated the exciton binding energy and the corresponding transition energy from the exciton ground state to the heavy-hole level, using a variational procedure within the effective-mass approximation. We have found that the binding energy of the heavy-hole exciton presents changes due to the temperature dependence of the electron affinity and static dielectric constant. However our results for the transition energy from the exciton ground state to the heavy-hole level coincide with those reported in a previous theoretical work, where we had found a very good agreement with photoluminescence and photoreflectance experimental studies at T=12 K in Ga1-xInxAsySb1-y films grown over GaSb substrates by liquid phase epitaxy.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0036745

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Study of temperature and indium concentration-dependent dielectric constant and electron affinity effects on the exciton optical transition and binding energy in spherical GaSb-Ga
<sub>1-x</sub>
In
<sub>x</sub>
AsySb
<sub>1-y</sub>
-GaSb quantum dots</title>
<author>
<name sortKey="Sanchez Cano, R" uniqKey="Sanchez Cano R">R. Sanchez-Cano</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Departamento de Fisica, Universidad Autónoma de Occidente</s1>
<s2>AA 2790 Cali</s2>
<s3>COL</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Colombie</country>
<wicri:noRegion>AA 2790 Cali</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Porras Montenegro, N" uniqKey="Porras Montenegro N">N. Porras-Montenegro</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Departamento de Física, Universidad del Valle</s1>
<s2>AA 25360 Cali</s2>
<s3>COL</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Colombie</country>
<wicri:noRegion>AA 25360 Cali</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0036745</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0036745 INIST</idno>
<idno type="RBID">Pascal:11-0036745</idno>
<idno type="wicri:Area/Main/Corpus">003805</idno>
<idno type="wicri:Area/Main/Repository">003832</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1386-9477</idno>
<title level="j" type="abbreviated">Physica ( E) low-dimens. syst. nanostrut.</title>
<title level="j" type="main">Physica. E, low-dimentional systems and nanostructures</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Band offset</term>
<term>Barrier height</term>
<term>Binding energy</term>
<term>Conduction bands</term>
<term>Effective mass</term>
<term>Electron affinity</term>
<term>Electronic structure</term>
<term>Excitons</term>
<term>Experimental study</term>
<term>Ground states</term>
<term>Heterostructures</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium</term>
<term>LPE</term>
<term>Nanostructured materials</term>
<term>Optical properties</term>
<term>Optical transition</term>
<term>Permittivity</term>
<term>Photoluminescence</term>
<term>Photoreflectance</term>
<term>Potential barrier</term>
<term>Quantity ratio</term>
<term>Quantum dots</term>
<term>Temperature dependence</term>
<term>Thin films</term>
<term>Valence bands</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Indium</term>
<term>Effet concentration</term>
<term>Constante diélectrique</term>
<term>Affinité électronique</term>
<term>Exciton</term>
<term>Transition optique</term>
<term>Energie liaison</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Point quantique</term>
<term>Nanomatériau</term>
<term>Dépendance température</term>
<term>Hauteur barrière</term>
<term>Barrière potentiel</term>
<term>Bande conduction</term>
<term>Bande valence</term>
<term>Structure électronique</term>
<term>Discontinuité bande</term>
<term>Hétérostructure</term>
<term>Etat fondamental</term>
<term>Masse effective</term>
<term>Photoluminescence</term>
<term>Photoréflectance</term>
<term>Propriété optique</term>
<term>Etude expérimentale</term>
<term>Couche mince</term>
<term>Epitaxie phase liquide</term>
<term>GaInAsSb</term>
<term>Substrat GaSb</term>
<term>7135</term>
<term>8107T</term>
<term>8535B</term>
<term>8107B</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have study the heavy-hole exciton states in GaSb-GainAsSb-GaSb type-I spherical Quantum Dots, using temperature-dependent static dielectric constant and electron affinity, with a finite height potential barrier, as a function of the quantum dot radius for several values of Indium concentration. Our calculations have been worked out using interpolating methods to find the temperature and Indium concentration dependence of both the dielectric constant and electron affinity, in order to determine the conduction and valence band-offsets in GaSb-GalnAsSb-GaSb heterostructure by application of the Electron Affinity Rule. We have calculated the exciton binding energy and the corresponding transition energy from the exciton ground state to the heavy-hole level, using a variational procedure within the effective-mass approximation. We have found that the binding energy of the heavy-hole exciton presents changes due to the temperature dependence of the electron affinity and static dielectric constant. However our results for the transition energy from the exciton ground state to the heavy-hole level coincide with those reported in a previous theoretical work, where we had found a very good agreement with photoluminescence and photoreflectance experimental studies at T=12 K in Ga
<sub>1-x</sub>
In
<sub>x</sub>
AsySb
<sub>1-y</sub>
films grown over GaSb substrates by liquid phase epitaxy.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1386-9477</s0>
</fA01>
<fA03 i2="1">
<s0>Physica ( E) low-dimens. syst. nanostrut.</s0>
</fA03>
<fA05>
<s2>43</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Study of temperature and indium concentration-dependent dielectric constant and electron affinity effects on the exciton optical transition and binding energy in spherical GaSb-Ga
<sub>1-x</sub>
In
<sub>x</sub>
AsySb
<sub>1-y</sub>
-GaSb quantum dots</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SANCHEZ-CANO (R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PORRAS-MONTENEGRO (N.)</s1>
</fA11>
<fA14 i1="01">
<s1>Departamento de Fisica, Universidad Autónoma de Occidente</s1>
<s2>AA 2790 Cali</s2>
<s3>COL</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Departamento de Física, Universidad del Valle</s1>
<s2>AA 25360 Cali</s2>
<s3>COL</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>76-80</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145E</s2>
<s5>354000194033290130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0036745</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. E, low-dimentional systems and nanostructures</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We have study the heavy-hole exciton states in GaSb-GainAsSb-GaSb type-I spherical Quantum Dots, using temperature-dependent static dielectric constant and electron affinity, with a finite height potential barrier, as a function of the quantum dot radius for several values of Indium concentration. Our calculations have been worked out using interpolating methods to find the temperature and Indium concentration dependence of both the dielectric constant and electron affinity, in order to determine the conduction and valence band-offsets in GaSb-GalnAsSb-GaSb heterostructure by application of the Electron Affinity Rule. We have calculated the exciton binding energy and the corresponding transition energy from the exciton ground state to the heavy-hole level, using a variational procedure within the effective-mass approximation. We have found that the binding energy of the heavy-hole exciton presents changes due to the temperature dependence of the electron affinity and static dielectric constant. However our results for the transition energy from the exciton ground state to the heavy-hole level coincide with those reported in a previous theoretical work, where we had found a very good agreement with photoluminescence and photoreflectance experimental studies at T=12 K in Ga
<sub>1-x</sub>
In
<sub>x</sub>
AsySb
<sub>1-y</sub>
films grown over GaSb substrates by liquid phase epitaxy.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70A35</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Effet concentration</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Quantity ratio</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Constante diélectrique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Permittivity</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Affinité électronique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Electron affinity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Exciton</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Excitons</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Transition optique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Optical transition</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Transición óptica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Energie liaison</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Binding energy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Hauteur barrière</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Barrier height</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Barrière potentiel</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Potential barrier</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Bande conduction</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Conduction bands</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Bande valence</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Valence bands</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Discontinuité bande</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Band offset</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Discontinuidad banda</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Etat fondamental</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Ground states</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Masse effective</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Effective mass</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Photoréflectance</s0>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Photoreflectance</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>39</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>40</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>40</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Epitaxie phase liquide</s0>
<s5>41</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>LPE</s0>
<s5>41</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>GaInAsSb</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Substrat GaSb</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>7135</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>8535B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>024</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003832 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003832 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0036745
   |texte=   Study of temperature and indium concentration-dependent dielectric constant and electron affinity effects on the exciton optical transition and binding energy in spherical GaSb-Ga1-xInxAsySb1-y-GaSb quantum dots
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024